A BIO-ECONOMIC MODEL OF SPOTTED WING DROSOPHILA FOR CALIFORNIA RASPBERRIES

DEREK FARNSWORTH
WHY STUDY SWD?

• Real-world problem with tangible benefits
 • New invasive that growers are still learning how to manage
 • Lack of management information means I need to investigate
 the science of SWD in addition to the economics

• Multi-disciplinary research excellent for expanding my professional range
 • Awesome dataset and support
 • Thank you Kelly Hamby and Frank Zalom!

• Funding
 • Small Crops Research Initiative
SPOTTED WING DROSOPHILA (SWD)

- SWD (*Drosophila suzukii*) is an invasive species
 - Commonly known as a type of fruit or vinegar fly
 - Originates from Japan
 - Infests ripening fruit **unlike** other fruit flies
- First detected in California in 2008
 - Now all over the continent
 - Oregon, Washington, Florida, Michigan, Canada, Mexico, etc.
- Hundreds of millions in damages to US berry and stone fruit supply chain (Goodhue et al.)
 - California and the Pacific Northwest produce 100% of commercial raspberries and blackberries, 84% cherries, 83% strawberries, 26% blueberries
ECONOMIC COSTS OF SWD

• Fruit losses
 • SWD infests a fruit and it is not worth picking
 • SWD infestations lower a field’s quality to the point it’s not worth harvesting

• Shipment rejection
 • Too many SWD in sample
 • Pesticide usage exceeds maximum residue limit (MRL)

• Management costs
 • Additional pesticide purchases
 • Additional pesticide applications
 • Labor and equipment
SPECIFIC SWD TRAITS

• Wide range of host crops
 • Infests just about any fruit with soft-flesh in the lab
 • Particularly likes raspberries, blackberries, blueberries, cherries, and strawberries in the field

• Females possess a serrated ovipositor
 • Enables SWD to infest undamaged, ripening fruit
 • Only 2 of 3000 species of Drosophila can infest healthy crops (Bolda et al.)
 • Ovipositor scars a source of other infestations

• Males identified by distinctive spot on wings
 • Easier to detect than females
DAMAGE PHOTOS

Ovipositor Scars

Maggot

Derek Farnsworth
TRAPPING PHOTOS

Example of a Trap

Raspberry
KELLY HAMBY DATA

- Weekly observations from Oct 2010 – Dec 2012
 - Watsonville raspberries
 - Organic and conventional sites
- SWD trappings (males, females, and other flies)
 - Apple cider vinegar, yeast, and water traps
 - Monthly vacuums
 - Counts for other flies only available 2011+
- SWD infestations (maggots and eggs)
 - 40 fruit sample when fruit available
- Pesticide applications
 - Amount of chemical and timing of application
STUDY DETAILS

• Commercial raspberry lifecycle is 18 month
 • 2 harvests: 1st fall of planting, 2nd spring next year
• 3 raspberry sampling blocks
 • Each block includes 3 organic and 3 conventional sites
 • Each site has 12 traps (4 apple cider, 4 yeast, 4 water)
• 2 weeks of overlap between blocks

<table>
<thead>
<tr>
<th>Dates</th>
<th>Planted (winter)</th>
<th>Harvest #1 (fall)</th>
<th>Harvest #2 (spring)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block #1</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td>Block #2</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Block #3</td>
<td>2011</td>
<td>2012</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Derek Farnsworth 10
SUPPLEMENTAL DATA

• Weather data
 • Watsonville’s National Weather Service Station
 • Precipitation and temperatures

• OSU’s SWD degree day phenology model
 • Estimates generational egg-laying and emergence dates
PURPOSE

• Build a field-level, bio-economic model
 • Evaluate the scientific and economic viability of different management options
• Test the efficacy of different traps
 • Is one trap more predictive than another?
 • Do the traps capture different populations characteristics?
 • Are the traps biased?
 • Does ripening fruit bid SWD away from traps?
• Construct a biological model of infestations for SWD in California raspberries
 • Estimate past and predict future fruit damage
 • Identify major damage factors
HYPOTHESES

- Female SWD trappings predict fruit damage better than male trappings
 - Female egg-laying the cause of damage
- Pesticides are effective population control options
 - Not all pesticides effectively manage infestations
- Traps are accurate estimators of fruit damage
- Warm weather increases fruit infestations
- Major emergence and egg-laying periods implied by a degree-day phenology model of SWD correspond to increased raspberry infestations
• Test damage prediction ability of traps in different real-world scenarios
 • Not every observer has the same ability to identify SWD

• 2 observational regimes
 • Observe flies with perfect knowledge
 • Identify all flies as well as an entomologist
 • Observe flies with imperfect knowledge
 • Only observe flies, not type or gender
TRAPPINGS

Apple-cider-vinegar traps

Yeast-sugar-water traps
PERFECT KNOWLEDGE

Apple-cider-vinegar traps

<table>
<thead>
<tr>
<th></th>
<th>Infestations</th>
<th>coef.</th>
<th>std. err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. = 676</td>
<td>R-sq. = 0.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male SWD</td>
<td>0.320</td>
<td></td>
<td>(0.279)</td>
</tr>
<tr>
<td>Female SWD</td>
<td>2.023***</td>
<td></td>
<td>(0.350)</td>
</tr>
<tr>
<td>Other Flies</td>
<td>-0.00713</td>
<td></td>
<td>(0.184)</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

Yeast-sugar-water traps

<table>
<thead>
<tr>
<th></th>
<th>Infestations</th>
<th>coef.</th>
<th>std. err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. = 676</td>
<td>R-sq. = 0.164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male SWD</td>
<td>-0.0171</td>
<td></td>
<td>(0.410)</td>
</tr>
<tr>
<td>Female SWD</td>
<td>2.223***</td>
<td></td>
<td>(0.306)</td>
</tr>
<tr>
<td>Other Flies</td>
<td>0.297</td>
<td></td>
<td>(0.211)</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1
Imperfect Knowledge

Apple-cider-vinegar traps

<table>
<thead>
<tr>
<th>Obs. = 676</th>
<th>Infestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-sq. = 0.086</td>
<td>coef.</td>
</tr>
<tr>
<td>All Flies</td>
<td>0.677***</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

Yeast-sugar-water traps

<table>
<thead>
<tr>
<th>Obs. = 676</th>
<th>Infestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-sq. = 0.134</td>
<td>coef.</td>
</tr>
<tr>
<td>All Flies</td>
<td>0.880***</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1
INTERPRETATIONS

• Yeast-sugar-water is the better trap
 • Explains more of the variation
 • Performs better in both regimes
 • Explains damages with females

• Apple-cider-vinegar traps have much less explanatory power and are misleading
 • Seems to trap *Drosophila melanogaster* (typical fruit fly) better than *Drosophila suzukii* SWD
EXPLAIN SWD RASPBERRY INFESTATIONS WITH
- Past infestations
- Current population
- Weather
- Predicted egg-laying/emergence dates
- Field type (organic?)
- Field location
- Insecticide applications

USE POOLED OLS
BIOLOGICAL MODEL RESULTS

<table>
<thead>
<tr>
<th>Obs. = 900</th>
<th>% Infestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-sq. = 0.811</td>
<td>coef.</td>
</tr>
<tr>
<td>Lagged Infestations</td>
<td>0.529</td>
</tr>
<tr>
<td>Female SWD</td>
<td>0.0159</td>
</tr>
<tr>
<td>Degree Days (last week)</td>
<td>0.0168</td>
</tr>
<tr>
<td>Peak 2nd Gen. Emergence</td>
<td>1.45</td>
</tr>
<tr>
<td>Peak 2nd Gen. Egg-laying</td>
<td>1.53</td>
</tr>
<tr>
<td>Organic Dummy</td>
<td>0.909</td>
</tr>
<tr>
<td>Block Dummy #1</td>
<td>-0.301</td>
</tr>
<tr>
<td>Block Dummy #2</td>
<td>-0.827</td>
</tr>
<tr>
<td>Entrust and Pyganic week 1</td>
<td>-0.419</td>
</tr>
<tr>
<td>Entrust and Pyganic week 2</td>
<td>-0.529</td>
</tr>
<tr>
<td>Delegate week 1</td>
<td>-0.313</td>
</tr>
<tr>
<td>Delegate week 2</td>
<td>-0.354</td>
</tr>
<tr>
<td>Delegate week 3</td>
<td>-0.698</td>
</tr>
<tr>
<td>Mustang and Malathion week 2</td>
<td>-0.300</td>
</tr>
<tr>
<td>Mustang and Malathion week 3</td>
<td>-0.313</td>
</tr>
</tbody>
</table>
• Female population and lagged infestations explain most of the variation
• Warm weather increases infestations
• Peak egg-laying and emergence periods for 2nd generation are major infestation events
• Infestations tend to be more severe in organic fields and can vary substantially between sites
• Insecticides are effective control options
 • Organic insecticide Pyganic ineffective
 • Conventional insecticides Mustang and Malathion underperform expectations
SUMMARY

- Yeast-sugar-water traps and fruit-sampling are effective estimators of infestations
- Most insecticides effective at controlling SWD
 - 50%-70% reduction in infestations 2-3 weeks later with Entrust (organic) and Delegate (conventional)
 - Don’t use Pyganic to manage SWD
 - Insecticide applications timing endogenous
 - Grower detects large SWD population and applies insecticide
- Established basics of controlling SWD
 - Use trappings and/or fruit sampling to track population
 - Apply insecticides 2-3 weeks prior to predicted 2nd generation egg-laying and emergence dates
FUTURE WORK

- Value costs, risks, and losses
 - Fruit losses
 - Infestations
 - Stopping harvest early
 - Shipment rejection
 - Too many infestations
 - Exceeding pesticide residue limits
 - Management costs
 - Skilled labor and equipment to apply insecticides
 - Unskilled labor to perform field sanitation
 - Insecticide costs and label restrictions
IDEAS

• A continuous scale for raspberry losses
 • % Loss = Infestations/40 if Infestations<40, otherwise 100%
 • Use 40 because 40-fruit sample
 • Worst infestations are 200+ maggots in 1 sample

• Incorporate other fruits and counties

• Test if harvest ends earlier in high infestation years
 • Account for weather and first harvest

• Model risk of rejection
 • Increases with % Loss and additional pesticide applications
 • Should Driscoll’s test fruit more during warm weeks?
MORE IDEAS

- IPM costs = Additional insecticides, capital usage, and labor hours
- Calculate the opportunity cost of unskilled labor
 - Attempt to explain lack of field sanitation
 - Possibly incorporate results from California labor paper
- Simulate potential benefits to research
 - Using yeast-sugar-water vs. other traps
 - Timing insecticide applications to population events
- Test for significant increase in CA pesticide use
 - Pesticide Use Reporting (PUR) database
QUESTIONS?

Thank you!